Review of methodologies for the synthesis of copper (NPsCU) and silver (NPsAG) nanoparticles with different shapes and sizes

Authors

  • Gabriel A. Lopez R. Laboratorio de Química Cuántica y Nuevos Materiales para la Innovación Tecnológica. Universidad Nacional Mayor de San Marcos. Lima, Perú.
  • Juan C. Ataucuri S Laboratorio de Química Cuántica y Nuevos Materiales para la Innovación Tecnológica. Universidad Nacional Mayor de San Marcos. Lima, Perú.

DOI:

https://doi.org/10.21754/tecnia.v27i2.174

Keywords:

nanoparticle synthesis, copper nanoparticles, silver nanoparticles

Abstract

Nanoparticles (NPs) are currently the subject of intense scientific research due to a wide variety of potential applications in various fields such as medicine, optics, electronics, nano‐chemistry and agriculture. The properties of these nanostructures depend on their size and shape, and specific properties can be obtained by varying these characteristics. For this reason, a bibliographical analysis was carried out covering different investigators who studied the various methods of synthesis of copper (NPsCu) and silver (NPsAg) nanoparticles, as well as the factors that modify the shape and size of these particles. A main conclusion of this study is that the shape and size of the nanoparticles depend upon factors that can be controlled.  

Downloads

Download data is not yet available.

References

[1] D. Paredes, "Estudio del efecto antibacteriano de nanopartículas de plata sobre escherichia coli y staphylococcus aureus. Quimico", Tesis, Universidad industrial de Santander, Bucaramanga, Nov, 2011.

[2] M. Monge, "Nanopartículas de plata: métodos de síntesis en disolución y propiedades bactericidas", Real Sociedad Española de Química 105, 33-41, Set 2008.

[3] G. Foladori, "Políticas públicas en nanotecnología en América Latina", Problemas del desarrollo 186, 47, Mar 2016.

[4] B. España, "Actividad antimicrobiana y mecanismo de acción de nanopartículas de plata y cobre incorporadas en polipropileno", tesis, Centro de investigación en química aplicada, Saltillo, Ago 2014.

[5] H. Ghorbani, A. Safekordi, H. Attar, "Biological and non¬biological methods for silver nanoparticles synthesis." Chem. Biochem 25, 317-326 Mar 2011.

[6] J. Ahmed, P. Trinh, A. M. Mugweru, and A. K. Ganguli, "Self-assembly of copper nanoparticles (cubes, rods and spherical nanostructures): Significant role of morphology on hydrogen and oxygen evolution efficiencies," Solid State Sci., vol. 13, no. 5, pp. 855-861, Mar.2011.

[7] K. Rajesh, B. Ajitha, Y. Reddy, Y. Suneetha, P. Sreedhara, "Synthesis of copper nanoparticles and role of pH on particle size control" Materialstoday 3, 1985-1991, 2016

[8] N. Sreeju, A. Rufus, D. Philip, N. Sreeju, "Microwave-assisted rapid synthesis of copper nanoparticles with exceptional ability and their multifaceted applications" Journal of Molecular Liquids 221, 1008-1021, Jun 2016.

[9] S. Yallapa, "Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract", Spectrochimica Acta, 110, 108-115, Mar 2013.

[10] S. Chandra, "Synthesis and characterization of copper nanoparticles by reducing agent" Journal of Saudi Chemical Society 18, 149-153, Jun 2014.

[11] Y. Wen, W. Huang, B. Wang, J. Fan, Z. Gao, and L. Yin, "Synthesis of Cu nanoparticles for large-scale preparation," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 177, no. 8, pp. 619¬624, Febr. 2012.

[12] S. De and S. Mandal, "Surfactant-assisted shape control of copper nanostructures," Colloids Surfaces A Physicochem. Eng. Asp., vol. 421, PP. 72-83, Dic. 2013.

[13] R. Wang and H. Ruan, "Synthesis of copper nanowires and its application to flexible transparent electrode," J. Alloys Compd., vol. 656, PP. 936-943, Set. 2016.

[14] J. Morales, J. Morán, M. Quintana, W. Estrada, "síntesis y caracterización de nanopartículas de plata por la ruta sol-gel a partir de nitrato de plata", Sociedad Química Perú, 75, 2, 2009.

[15] Q. Yaqiong, L. Xiaohui, Jing, L Hong, W. Hongli, "Size control over spherical silver nanoparticles by ascorbic acid reduction" Colloids and Surfaces A, 372, 172-176, Sep 2010.

M. Guzman, J. Dille, S. Godet, "Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria" Nanomedicine 8, 37-45, May 2011.

[17] G. Malegowd, J. Jung, D. Kim, K. Varaprasad, "Identification of silver cubic structures during ultrasonication of chitosan AgNO3 solution" Carbohydrate Polymers 152, 558- 565, Jul 2016.

[18] S. Yu, Y. Sathishkumar, K. Devarayan, C. Sun, G. Chow, "Shape-controlled extracellular synthesis of silver nanocubes by Mucor circinelloides" Materials Letters 3-46, Jun 2015.

[19] G. Hu et al., "Surfactant-directed synthesis of silver nanorods and characteristic spectral changes occurred by their morphology evolution," Phys. E Low-Dimensional Syst. Nanostructures, vol. 64, pp. 211-217, Jul.2014.

[20] X. Gu, C. N ie, Y. Lai, and C. Lin, "Synthesis of silver nanorods and nanowires by tartrate- reduced route in aqueous solutions," Mater. Chem. Phys., vol. 96, no. 2-3, pp. 217-222, Jul. 2006.

[21] E. Verde, "Desarrollo y caracterización de laminados vinílicos reforzados con nanopartículas de cobre y fibra de cuero", Tesis, Universidad Nacional Mayor de San Marcos, Lima 2016.

Published

2017-12-01

How to Cite

[1]
G. A. Lopez R. and J. C. Ataucuri S, “Review of methodologies for the synthesis of copper (NPsCU) and silver (NPsAG) nanoparticles with different shapes and sizes”, TEC, vol. 27, no. 2, pp. 45–52, Dec. 2017.

Issue

Section

Articles