Numeric simulation study of a textile processing plant for residual energy recovery

Authors

  • Anita Etelvina Peraldo Ramos Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería, Lima, Perú
  • Nain Maximo Ramos Alvarez Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería, Lima, Perú
  • Adrián Alejandro Terán Castañeda Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería, Lima, Perú
  • Juan José Uchuya López Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería, Lima, Perú

DOI:

https://doi.org/10.21754/tecnia.v32i1.1343

Keywords:

Residual energy, air condition, numeric simulation

Abstract

Currently, textile processing plants need to control the conditions associated with the spinning process, being the air conditioning of working environments an important factor in the quality and productivity of these processes. The benefits obtained from the optimization of this air conditioning help to guide a lower energy consumption, helping to improve the positioning of the products and providing profitability in the operation processes. Due to the advantages obtained in the air conditioning process, this work proposes a system that allows reusing the residual energy generated at the outlet of the ventilation ducts. This residual energy is fed into the plant to reduce the high temperatures observed in the ceiling. Consequently, this approach will generate a decrease in the service demand of the air conditioning system and reduce operating costs. Also, to verify this proposal, a multiphysics numerical simulation is performed and compared to a conventional air conditioning system. The simulation incorporates turbulence models to represent the flow in the ventilation ducts. In addition, this simulation considers the heat transfer that is generated by the equipment operating in this textile plant. The results of the multiphysics simulation show the temperature fields, flow lines, among other important data obtained from the numerical simulation. All the results are given for a section of the environment of these plants and verify the efficiency of the proposal of this work.

Downloads

Download data is not yet available.

References

[1] Resta, B. & Dotti, S. (2015). 8 - Environmental impact assessment methods for textiles and clothing. Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing, Woodhead Publishing Series in Textiles 2015, 149-191. doi: 10.1016/B978-0-08-100169-1.00008-3
[2] Soto, M. D., & Nuñez, M. (1997). Estudio de factibilidad de una hilandería de algodón pima, peinado retorcido para títulos finos 50/2 - 95/2 Ne. Lima.
[3] Azahuanche Asmat, M. H., & Azahuanche Asmat, M. H. (2013). Cálculo y diseño del sistema de climatización de áreas de producción en laboratorios farmacéuticos. Universidad Nacional de Ingeniería. https://repositorioslatinoamericanos.uchile.cl/handle/2250/2342559#.YTVDBhMNbgo.mendeley
[4] Caparó, J. C. (1999). Climatización de la sala de ventas de un supermercado. Lima.
[5] Dissanayake, D. G. K., Weerasinghe, D. U., Thebuwanage, L. M., & Bandara, U. A. A. N. (2020). An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber. Journal of Building Engineering, 101606. doi:10.1016/j.jobe.2020.101606
[6] Moon, K. K.-L., Youn, C., Chang, J. M. T., & Yeung, A. W. (2013). Product design scenarios for energy saving: A case study of fashion apparel. International Journal of Production Economics, 146(2), 392–401. doi:10.1016/j.ijpe.2013.02.024
[7] Riba, J. R., Cantero, R., Canals, T., & Puig, R. (2020). Circular economy of post-consumer textile waste: Classification through infrared spectroscopy. Journal of Cleaner Production, 272, 123011. https://doi.org/10.1016/J.JCLEPRO.2020.123011
[8] Firfiris, V. K., Martzopoulou, A. G., & Kotsopoulos, T. A. (2019). Passive cooling systems in livestock buildings towards energy saving: a critical review. Energy and Buildings, 109368. doi:10.1016/j.enbuild.2019.109368
[9] Cui, X., Islam, M. R., & Chua, K. J. (2019). Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates. Energy, 172, 1016–1026. doi:10.1016/j.energy.2019.02.040
[10] Çay, A. (2018). Energy consumption and energy saving potential in clothing industry. Energy, 159, 74–85. https://doi.org/10.1016/J.ENERGY.2018.06.128
[11] Tran, M. T., Vu, X. H., & Ferrier, E. (2020). Mesoscale numerical modeling and characterization of the effect of reinforcement textile on the elevated temperature and tensile behaviour of carbon textile-reinforced concrete composite. Fire Safety Journal, 103186. doi:10.1016/j.firesaf.2020.103186
[12] Dhamneya, A. K., Rajput, S. P. S., & Singh, A. (2018). Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving. Journal of Building Engineering, 17, 52–64. doi:10.1016/j.jobe.2018.01.012
[13] Turnbull, R., & Muneer, T. (2019). A Two Year Comparison of Energy and CO2 Emissions of an Industrial Refrigeration Plant after the Installation of a Waste Heat Recovery System. Energy Procedia, 161, 251–258. doi:10.1016/j.egypro.2019.02.089
[14] Zanchini, E., & Naldi, C. (2019). Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy. Energy. doi:10.1016/j.energy.2019.05.065
[15] ANSYS Fluent User's Guide Release 20.2, ANSYS, 2020.
[16] ANSYS Fluent Theory Guide Release 20.2, ANSYS, 2020.
[17] Jeon, Chan-Ki & Lee, Jae-Seong & Chung, Hoon & Kim, Ju-Ho & Park, Jong-Pil. (2017). A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent. Advances in Materials Science and Engineering. 2017. 1-6. 10.1155/2017/3938965.

Published

2022-06-30

How to Cite

[1]
A. E. Peraldo Ramos, N. M. Ramos Alvarez, A. A. Terán Castañeda, and J. J. Uchuya López, “Numeric simulation study of a textile processing plant for residual energy recovery”, TEC, vol. 32, no. 1, pp. 53–62, Jun. 2022.

Issue

Section

Chemical engineering