Percolación de lados sobre Zd y el Teorema de Harris-Kesten

Authors

  • J. Cerda Hernández Instituto de Matemática e Estatástica Universidade de Sao Paulo

Keywords:

Percolation model, exponential decay , uniqueness of the open cluster, FKG inequality , Russo’s formula

Abstract

These lecture notes are based on a mini-course “Percolation models” which I taught at National University ofEngineering in January 2014. The goal was to try to develop a first self-contained course in percolation models,that is one of the simplest models of statistical physics exhibiting a phase transition, and present some fundamentaltools that we use in the formulation and proof of Harris-Kesten Theorem (see [8] and [1]) on the exact value of thecritical probabilitypcfor bond percolation on Z2

Downloads

Download data is not yet available.

References

1. Kesten H., The critical probability of bond percolation on the square lattice equals 1
2 . Comm. Math. Phys. Vol. 74(1), Pag 41-59 (1980). 2. Kesten H., Percolation Theory for Mathematicians. Birkhauser(1982).
3. Grimmett, G. R.: Percolation. Springer-Verlag, Berlin (1999).
4. Bollobas, B., Riordan O.: Percolation. Cambridge University Press, United Kingdom (2006).
5. Aizenman, M., Kesten, H. , Newman, C.M. : Uniqueness of the innite cluster and continuity of connectivity functions for short and long range percolation. Communications in Mathematical Physics 111, 505-532 (1987)
6. Aizenman, M., Barsky D.: Sharpness of the phase transition in percolation models. Communications in Mathematical Physics 108, 489-526 (1987).
7. Menshikov M.V.: Coincidence of critical points in percolation problems. Soviet Mathematics Doklady 33, 856-859 (1986).
8. Harris T., A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc., 56, 13-20 (1960).
9. Broadbent S.R., Hammersley J.M.Percolation processes I. Cristals and mazes. Proc. Cambridge Philos. Soc., 53, 629 -641 (1957).
10. Hammersley J.M.Percolation processes: Lower bounds for the critical probability. Ann. Math. Statist, 28, 790-795 (1957).
11. van der Berg, J. , Maes, C.: Disagrement percolation in the study of Markov elds. Ann. Probab. 22, 749{763 (1994).
12. Krikun, M., Yambartsev, A.: Phase transition for the Ising model on the critical Lorentzian triangulation. Journal of Statistical Physics, v. 148, p. 422-439 (2012).
13. Haggstrom, O.: Markov random elds and percolation on general graphs. Adv. in Appl. Probab. v. 32, p. 39-66 (2000).
14. Grimmett, G. R.: Space-Time Percolation. Progress in Probability. v. 60, p. 305{320 (2008).
15. Fontes L.R.:Notas en percolac~ao. IMPA (1998).
16. Grimmett, G. R.: The stochastic random-cluster process and the uniqueness of random-cluster measures. Ann. Probab.. v. 23(4), p. 1461{1510 (1995).
17. Georgii, H., Haggstrom, O. : The random geometry of equilibrium phases. Phase transitions and critical phenomena, Vol 18. Academic press, San Diego, CA , 1{142 (2001).
18. Fortuin, C.M., Kasteleyn, R.W.: On the random-cluster model I. Introduction and relation to other models. Physica, 57, 536{564 (1972).
19. Fortuin, C. M., Kasteleyn, P. W., Ginibre, J.: Correlation inequalities on some partially ordered sets, Communications in Mathematical Physics 22, 89-103 (1971).
20. Holley, R.:Remarks on the FKG inequalities, Communications in Mathematical Physics 36, 227-231 (1974).
21. Russo, L.: On the critical percolation probabilities, Zeitschrift fur Wahrscheinlichkeitstheorie and Verwandte Gebiete 56, 229-237 (1981).
22. Burton, R.M., Keane M.: Density and uniqueness in percolation, Communications in Mathematical Physics 121, 501-505 (1989).

Published

2021-06-18

How to Cite

Cerda Hernández, J. (2021). Percolación de lados sobre Zd y el Teorema de Harris-Kesten. REVCIUNI, 16(1), 7–13. Retrieved from https://www.revistas.uni.edu.pe/index.php/revciuni/article/view/937

Issue

Section

Artículos