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ABSTRACT

This paper deals with the model re-identification in closed-loop systems with already existing
MPC controllers. It is assumed that the controller has a two-layer structure, where in the upper
layer a simplified economic optimization determines a set of optimal steady state values for the
process inputs (targets) and passes this set to the MPC for implementation. This is the case of
several commercial MPC packages applied in industry. This work focuses on the case where the
existing process model shows signs of deterioration and there is significant benefit in obtaining
a new model aiming a MPC re-commissioning procedure. It is proposed a new methodology to
excite the system in closed-loop by introducing persistently exciting signals in the objective
function of the economic layer. The approach allows the continuous operation of the system as
the process constraints and product specification can be satisfied during the test. The
application of the method is illustrated by simulation of a depropanizer column of the oil
industry. The method is simple to be implemented in existing commercial MPC packages and
the results show that the method has a good potential to be applied in practice.

Key words.- Closed-loop identification, Model predictive control, Process model maintenance,
Control performance assessment, Depropanizer column.

RESUMEN

El objetivo de este trabajo es la re-identificacion del modelo de proceso que se utiliza en
controladores predictivos (MPC) ya existentes usando datos de operacion en lazo cerrado. Se
asume que el controlador tiene una estructura en dos capas, donde en la capa superior un
simple algoritmo optimizacion econémica determina un conjunto de valores dptimos en estado
estacionario (“targets”), los cuales son pasados al MPC para su implementacion. Este es el
caso de varios paquetes comerciales MPC aplicados en la industria. El presente trabajo enfoca
el caso donde el modelo del proceso presenta signos de deterioro, por lo que obtener un nuevo
modelo representa beneficios significativos en el procedimiento de re-comisionamiento del
MPC. Se propone una nueva metodologia para excitar el sistema en lazo cerrado,
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introduciendo sefiales de excitacion persistente en la funcién objetivo de la capa superior del
MPC. Esta estrategia permite la operacion continua del sistema, respetando las restricciones
del proceso y cumpliendo las especificaciones del producto. La aplicacién del método se ilustra
a través de simulaciones numéricas de una columna depropanizadora tipico de la industria
petrolera. El método es simple de ser implementado en controladores MPC existentes y los
resultados muestran su gran potencial para aplicaciones prdcticas

Palabras clave.- Identificacion en lazo cerrado, Control predictivo, Mantenimiento del modelo
del proceso, Evaluacion del desempefio del control, Columna depropanizadora.

INTRODUCTION

Model predictive control (MPC) strategies have
become the dominant approach in advanced
process control applications [1]. The performance
of these control systems depends heavily on the
embedded process model [2], which is used to
predict the future behavior of the process output
along a prediction horizon that is long enough to
encompass all the process dynamics that need to be
taken into account in the computation of the
control law. Thus, it becomes clear that a poor
process model may result in poor output
predictions, and a decrease in the control
performance [3].

Although industrial processes present nonlinear
dynamic characteristics, the current generation of
commercially available MPC is based on linear
and time-invariant (LTI) models identified,
usually, from open-loop step test. While this
approach is valid in small regions around the point
where the model was obtained, the control system
works satisfactorily in most applications. However,
after some operation time (2 to 3 year approx.)
MPC controllers seldom keep performing as they
were initially designed. The main cause of the
performance degradation of MPC is related to the
model deterioration resulting from changes in the
dynamic behavior of the plant or persistent
unmeasured disturbances that force the plant to a
different operating point [4]. Changes in the
dynamics of the plant may result from fatigue
conditions, fouling, debottlenecking, etc, or
changes in the operating conditions or product
specifications. Usual disturbances include the
environment temperature, variations on the
feedstock impurities or operating problems in an
upstream process. Minor disturbances include
process and instrumentation noises. In general, the
above listed problems intensify with time and tend
to accentuate the plant/model mismatch, leading to
poor output prediction and, therefore, degradation
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in the control system performance. In order to keep
the performance of the MPC at an acceptable level,
it is essential to carry out the MPC re-
commissioning in a periodic basis, which means to
re-identify the process model and, if necessary, to
retune the MPC considering the new model [5].
However, due to production goals and safety
aspects, model re-identification means, in most
cases, to develop a new model based on plant data
obtained in closed-loop conditions.

Closed-loop 1identification is a research subject
with growing interest in the last decade [6, 7 y 8].
Important aspects on model identification have
been studied and several identification strategies
have been proposed. Production goals and safety
aspects are the usual incentives to research in
closed-loop identification in order to build a model
that is relevant to process control. All closed-loop
identification can be categorized as variants of the
following three approaches: direct, indirect and
joint input-output methods. Both indirect and joint
input-output methods require prior knowledge of
the controller or assume that it has a certain LTI
structure. Obviously, these methods are not
suitable for MPC applications, because MPC
presents nonlinear and time-variant features,
especially when operating under constraints [9].
For this sort of control strategy, the direct method
(or open-loop method) is the recommended choice
for closed-loop identification [10, 11y 12].

In closed-loop identification, the use of routine
operating data would be an ideal target. But, the
inherent reduction in the excitation resulting from
the presence of the controller may result in a poor
signal-to-noise ratio. Theoretical studies show that
in order to achieve necessary and sufficient
conditions for process identifiability, a persistently
exciting (PE) external signal is required [13]. In
MPC systems, external excitation is a dither signal
that may be introduced in the set-point [14], the
controller output [15] or the feedback path. The
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main disadvantage of this approach is that there is
no guarantee that the process constraints and
product specifications will be attended during the
execution of the excitation procedure. On the other
hand, an insufficient excitation may compromise
the identification requirements. To overcome these
problems, some authors have proposed the so-
called internal excitation methods. Genceli and
Nikolaou [16] propose the MPCI (model predictive
control and identification) where the PE
characteristic of the inputs is imposed as a
constraint in the control optimization problem. The
resulting problem is a non-convex one, being
necessary some modifications on the code of the
control program. This is certainly not available for
most of the practitioners. Sagias and Nikolaou [17]
propose the extension of the cost function of the
conventional MPC to address both control and
identification objectives. The approach considers
injection of a dither signal into the new cost
function trying to force a predefined sequence of
moves on the manipulated inputs. With this
strategy the control problem remains convex and
no new optimization code is needed.

The main goal of this paper is to establish a new
closed-loop  identification = methodology  of
processes under MPC control. Motivation for this
work is due primarily by commercial needs and as
an attempt to overcome the significant gap
between practical applications and theory in
closed-loop identification with MPC. The proposed
methodology takes into account that the
identification procedure must be performed in an
industrial environment where production cannot be
interrupted and the process operation must be kept
inside an operating window defined by product
specification and equipment constraints. To finish
the paper, an approach is proposed for MPC
performance assessment, which uses results from
the closed-loop identification methodology.

THE PROPOSED METHODOLOGY

Most of the commercial MPC packages are
implemented in a two-layer structure as part of a
hierarchical control structure [18, 19 y 20]. The
two-layer MPC considered here is shown in Figure
1, with both layers executed with the same
sampling period. The upper layer usually
corresponds to a simplified steady state economic
optimization, in which the economic objective is
represented as a linear combination of the process
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inputs, and the lower layer stands for a QDMC
(quadratic dynamic matrix control) algorithm in
which the outputs are controlled in specified zones
or ranges instead of fixed references. In the
economic optimization we search for the optimum
steady state values of the system inputs (input
targets). This is done by optimizing a linear or
quadratic economic objective subject to bound
constraints in the system inputs and outputs. The
outputs at the optimal steady state are computed
through a steady state linear model and using the
available output prediction in the MPC algorithm.
The optimal input targets are sent to the MPC
algorithm, where the control cost is extended to
include a term that weights the distance between
the present value of the input and the optimal
target.

MPC
Control System :
Egoniomilc Steady state
Optirnization optimization
us “ar(}d i}{ﬁkvm)
MPC Dynarmic
Controller constraint control
uk) y(%)
Distributed Cortrol Systern } Basic regulatory
i control
PROCESS

Fig. 1 Typical MPC layered structure.

A reasonable consideration is that when the
process model is poor, the economic optimization
layer will change the input target to the MPC layer
quite often, and so, the input targets could be
viewed as a possible test signal in the closed-loop
identification procedure. However, to assume that
these natural moves on the input targets will be
sufficiently exciting is a questionable matter.

Taking advantage of the MPC layered structure
(Figure 1), and in order to guarantee the necessary
excitation of the process, which we are trying to re-
identify, we propose a method where the PE test
signal is introduced as a multiplier factor of the
economic coefficients in the objective function of



Juan F. Tisza Contreras, Oscar A. Z. Sotomayor, Darci Odloak, Lincoln F. L. Moro, Herndn D. Alvarez,

the economic optimization layer. For this purpose,
the economic optimization problem is re-written as
follows:

min —(VV] ®Wexc)AuS +"VV2AuS ”j +”W35y“§ (1)

Aux,ﬁy

subject to constraints:

Aug =u, —u,,
Vs = GolAug + Pk +n/k)
Umin < Us < Umax

! !
Ymin Sys +6y Symax

@)

where:

u,, is the vector of manipulated inputs at present
time k, u, is the vector of targets of the
manipulated inputs, y, is the vector of predicted
outputs at steady state, P(k+n/k) is the
prediction of the controlled output at instant &k +n
(n is the model horizon or settling time of the
dynamic process model) computed at time &, J,, is
the vector of slack variables for the controlled
outputs, G, is the steady state gain matrix of the
process, 1] is the vector of economic coefficients
of the manipulated inputs, W, is the matrix of
weights of the manipulated input moves, #; is the
matrix of weights of the output slack variable,
W, is the time-variant weighting vector of the
economic coefficients (persistently exciting test
signals), u.;, and ug, are the bounds of the

manipulated inputs (the same as used in the control

layer), yiy, and yp.. are the bounds of the
controlled outputs (which zones can be smaller
than or equal to the ones defined by y.;, and

Vmax @8 used in the MPC layer).

In Equation 1, operator ® denotes the Hadamard
(or Schur) product. On the above equations, the
slack variable is included to guarantee existence of
a solution to the optimization problem defined in

Equations 1 and 2. If W,

.xc 18 set equal to a time-

invariant vector of ones, the excitation procedure is
ended and we have the original economic
optimization problem.
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As a result of the solution to the problem
formulated in Equations 1 and 2, we obtain the
input target u, that is passed to the MPC layer,
which solves the following quadratic program (QP)
problem:

min i"Q(ﬁ(kH/k)—ysp)
1=

R, [ua, + 2Au(k+i—l/k)—ud.]

i=1

2 m
[+ ;"RAu(k +j-UBE+

2
m

>

Jj=1

2

subject to constraints:

~ At SAu(k'l'j_l/k)SA”maxs Jj=Lm
' @)

J
Ungin Sty + Y D +i=1/k) Sy, j=1,m
i=l

where:

J is the output predictions, yg, is the set-point of
the system output, Az is the vector of control
moves, m is the control horizon, p is the
prediction horizon, Q 1is the diagonal weight
matrix of the controlled outputs, R is the diagonal
weight of matrix of the manipulated inputs, R, is

the diagonal matrix that weights the distance
between the computed input and the optimum
target. In the controller defined by Equations 3 and
4, the zone control strategy is implemented as
follows. Depending on the value of each output
prediction J; at instant k+i, we may have the

following cases:

(a) yj,min = }A’j(k'}' i/k) s yj,max

In this case, the error on this output at time instant
k+i can be ignored by the controller. This means
that weight Q should be made equal to zero and

the set-point can assume any value.

(b) Yk +1)> ) max
In this case, the controller should bring the output

back to the upper boundary of the control zone.
Then, we should select the output set point such

that ¥, = ¥} max » and weight Q should be made

equal to the value obtained in the controller tuning
procedure.
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(c) Analogously, if J;(k+1) <y} min

Then, this output should be brought back to the
lower boundary of the control zone. In this case we
make y; o, =¥, min and weight Q is selected as in

the previous case.

The proposed method to excite the system in
closed-loop can be considered as an internal
excitation method, and it can be easily
implemented in existing MPC packages'. Each test
signal is designed with a different shape, such that
the cross-correlation between the inputs is
minimized. We will show, in the example section,
that, with this approach, the inputs can be
adequately excited, the feedback effect on the test
data is minimized and the requirements about the
test signal for the system to be identifiable are
reached. Also the approach attends the process
safety requirements and the specifications of the
products are attended satisfactorily.

The other steps of the proposed methodology
follow same steps of the identification
methodology that is usually applied to industrial
processes [21]: design of the test signal, selection
of the model structure, computation of the model
parameters and model validation. The development
of each of these steps is illustrated in the case study
of closed-loop identification that is presented to
follows.

CASE STUDY: DEPROPANIZER COLUMN

This work considers the process studied by Porfirio
et al. [22]. It is a depropanizer column of the fluid
catalytic ~ cracking (FCC) unit at the
PETROBRAS’s Presidente Bernardes Refinery of
Cubatdo (RPBC), Brazil. In this process, the C3
stream (propane and propene) is separated from a
C4 stream (butane, butene and other hydrocarbons
with four atoms of carbon). A schematic diagram
of the depropanizer column with some of the
regulatory control loop (PID type) and MPC
control system is shown in Figure 2.

' For instance, the two-layers MPC algorithm as

described in Section 2, with slight modifications and
without excitation procedure, is supported by the
PETROBRAS advanced control package SICON, which
is the standard process control software in the oil
refineries of PETROBRAS.
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Fig. 2 Diagram of the depropanizer column.

In Figure 2, T-01 is the depropanizer column, E
stands for heat exchanger and V designates a
process vessel. The feed stream 1is liquefied
petroleum gas (LPG) that comes from the top of a
debutanizer column that separates the LPG from
gasoline. The C3 stream is produced as the top
stream of the depropanizer column and the C4
stream is produced as the bottom stream of the
column. AIl and AI2 are analyzers that measure
the contents of C4 in the propane stream and the
contents of C3 in the butane stream, respectively.

This process should be controlled such that the
recovery of C4 is maximized, because this stream
is sent to the alkylation unit where the C4 is
converted into high-octane gasoline. For this
purpose, the depropanizer is being controlled by a
commercial MPC package similar to the one
described in section 2. It is a 2x2 multivariable
control system, where the output variables y; and
¥, are the molar composition of C3 in the bottom
stream (%) and the temperature at the first stage of
the top section of the distillation column (°C),
respectively. The input variables u; and u, are the

reflux flowrate to the top of the column (m?/d ) and

the flowrate of hot oil to the reboiler (m®/d),
respectively.

To represent the “real” process and to represent the
nominal process model (already existing model in
MPC) in the simulations that will be performed
here, the following transfer function matrices taken
from [22] are considered:
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Real process:

(—2.218x10'4)s+(5.656x10‘4) (0.7413)(10_4)5—(1.452)(10_3)
5% +3.49485+0.5902 5% +2.69875+0.4023

(-1.135x10%)s-(1.235x102) (g 35102)5+ (0.2x102)
57 +1.63805 +0.09852 57 +2.42985+0.0651
®)

G,()=

Old process model:

(0‘4227x10_4)s+(0A1094x10'4) (-12055x104)5-(0.03824x107)

G ()= 5% +0.1090s +0.0243 5% +0.13425+0.0111
W -3 3 R

(-00873x10%)s-(0.1116x10%) (1 3310954 07510

52 +0.13175+0.0073 % +2.26055+0.1366

(6)
The main parameters of the controller are:
W, =(500,-500),

W, = diag(10°,10%)
R =diag(1.5,1.5),

W, = diag(200,200)

0 =diag(1.3,1.2),
R, = diag(10,10),

mm =(2800,1500), U = (3250,2000),
Umax (10 10) Ymin = (07,48) 5
Vmax = (1.0,50), Y =(0.8,48.25),

VYmax =(0.95,49.75), n=120, p=60, m=2.
The sampling time is Af=1 min. As it can be
noted from the input and output bounds, the
operating window of the depropanizer column is
quite narrow, which is a characteristic of high-
purity distillation systems.

PE signal design and generation of the dataset

The design of the test signal plays a major role in
the excitation and identification procedures of the
process system. In the closed loop identification
strategy proposed here, the purpose is to design a
PE test signal that produces a persistent excitation
of the process input.

One of the PE signals most used in industrial
practice is the pseudo-random binary sequence
(PRBS) [23]. The energy content of this signal is
distributed uniformly over the entire frequency
range. However, in many situations, as the present
one, we are interested in a particular frequency (or
frequency range) other than the broad spectrum.
The generalized binary noise (GBN) proposed by
Tulleken [24] has a similar approach as the PRBS
except an additional parameter related to the
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switching probability. This allows manipulation of
the power spectrum of the test signal, such that
most energy can be concentrated in the low-
frequency range. -Another advantage of GBN is
that the signal length is flexible and it has a
minimum crest factor. Due to these facilities, GBN
is considered as the most suitable signal for
control-relevant  identification  of  industrial
processes [25].

Based on guidelines provided by Zhu [25] and a
priori knowledge of the process (G,,),
independent GBN signals of magnitude +1 are
designed and they are applied in the economic
optimization layer of the MPC. The duration of the
excitation test is 4500 min, resulting 4500 samples
of input-output data, which are shown in Figure 3.
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Fig. 3 Input-output dataset of the depropanizer
column.
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As can be seen in Figure 3, the excitation signal
that was introduced in the MPC system did not
compromise the operating objectives of the
process, as both the inputs and outputs were inside
the respective boundaries. The strategy of the zone
control minimizes the feedback effect on the
identification data, because during most of the time
of the test, the control action aiming at controlling
the outputs was not activated. With this strategy
the closed-loop identification  procedure
approaches the direct or open-loop identification
method procedure, which ignores the presence of
the controller.

As usual, in any model identification procedure,
the simulation data represented in Figure 3 should
be normalized in order to make the inputs and
outputs of the system equally important. This is
done by subtracting from each input and output its
computed mean and dividing the result by the
standard deviation of that variable. Linear trends
were also removed. Finally, the dataset is filtered
with a low pass filter aiming to concentrate the
identification results in the frequency range of
interest.

A portion of this dataset (first 3000 samples) is
used for identification purposes and another part
(remaining 1500 samples) to subsequently validate
the estimated models. Based on the covariance test
[26], it can be proved that the inputs are PE of
order 4, which guarantees the identification of new
transfer functions of 2"-order for the depropanizer
column.

To verify the quality of the identification dataset,
Figure 4(a) presents the power spectrum of the

inputs. The selected part of the spectrum (wx ,w*)

indicates the desired frequency range where the
model will be identified. In fact, a good model in
the low and mid frequency ranges is essential for
MPC control purposes [27].

Namely, low frequency (gain) model information
is critical for steady state optimization. Here, dips
at frequencies outside of the indicated bandwidth
and other high-frequency contributions were not
included in the identification procedure.

Figure 4(b) shows also that low and high output
gain directions are well excited, allowing a good

estimate in both directions.
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Fig. 4 (a) Power spectrum of the inputs,
(b) Excitation of output gain directions.

Model structure selection

All identified models have certain bias (or
deterministic error) and variance (or stochastic
error). The best model is obtained by minimizing
the total error. But, there is a tradeoff between both
parts of the error. By using nonparametric FIR
(finite impulse response) models, bias error can be
minimized (because of the reduced model structure
and order limitations), but it can result in higher
variance due to the larger number of parameters.
On the other hand, by using low-order parametric
models, variance error is reduced but bias error is
inevitably larger [28].

In many industrial MPC controllers, the stochastic
model is fixed a priori and the ‘best approximate
process model” within some chosen model
structure needs to be estimated. In the present
paper, it is considered that the process can be
represented by continuous-time MISO (multiple-
input, single-output) OE (output-error) transfer
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function models, with the stochastic model
parameterized as unitary, of the following form:

nll

yitp)= Zéj,i(sapj,i)ui(t_gj,i)+gj(t); J=Ln,
i=1
(7)

where GA]»‘,-(s, pj;i) 1s the ( j,i)th transfer function

defined as:

G (s, p; ) ==L %) k=0 (8)
JL NI ) ;g

with a;;, =1, n;;>m;;, where u(f) is the

/"i’nj,l J jai ?

input vector, y(f,p) is the model output, 0, is
the time-delay between the i, input and the j,,
output, &(#) is the residual or total model error
(bias plus variance), n, and 7, are the number of

inputs and  outputs,  respectively,  and

5 # 1
3 g “ue 7 e ) " "Wﬁ/l."‘
Pii= P)j.s.mf,_,, D50 ign; -1 ”j‘r'.(.l} ex’
, . ,
with p;;=n;;+m;;+1, where n;; and m;
denotes the denominator and numerator orders of
G;i(s,Pj:) Therefore,  the

parameter vector is

respectively.

P I,
i LX) e

& i 3 ]')[ o Z pj-,’ (())

Identification procedure

The goal is to build a model as defined in Equation
7 based on closed-loop sampled data, focusing on
the parameters of each transfer function

(A?j,i(s, p;;) rather than on the model error
appearing in Equation 7. The pure time-delay 6, ;
is supposed to be known a priori and to be a
multiple of the sampling timeAs. Several
procedures have been proposed, which are
developed as extensions of the existing procedures
that deal with SISO systems and that allow the
identification of transfer functions with a common
denominator. This approach may not be realistic in
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several practical applications. In this work, it is
used the CONTSID toolbox [29] that presents new
methods in the time-domain to deal with processes
described by continuous-time MISO systems with
several  transfer functions  with  different
denominators. The OE method from the CONTSID
toolbox is used to find the parameter vector p;

(Equation 9) for the depropanizer column, with

n,=n,=2, n;;=2 and m;;=1. The

identification is carried out off-line using the
identification dataset and considering the values of
the parameters of the old process model (Equation
6) as the initial estimation for the identification
algorithm. The re-identified model is:

New process model:

(25%ﬂ04)s+(1.145>d0*‘) (—1276x10*’)9~(0.552x1(r3)

§+085275-+0.1201 S+L157s+0.153
Gryeul) ) X
(-261990%)s{ 06740%) 1431054406007
$7+09Bs+0.05466 F+2955+7934
(10)

The old and new process models are evaluated
based on the following performance criteria:

”0””1()’]_);/)

norm(y ; —mean(y;))

FIT=100><[1—

1
o vy =) "

)

where y is the true system output and p the’

model output. Coefficient FIT indicates the
percentage of the output variation that can be

associated to the model, while coefficient R;

measures how well the model output explains the
behavior of the system output, and this parameter
will be close to 1 in low noise conditions.
Simulation results of the old and new models are
presented in Figure 5. Performance indicators and
visual inspection show that the new model matches
much better the system outputs than the available
model in the MPC package. Loss function and
Akaike’s final prediction error (FPE) associated to
each new model are also shown,
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Fig. 5 Simulation results for the depropanizer column.

Model validation

Here, the goal is to confirm whether the obtained
model is an accurate representation of the process
and to provide a basis for possible re-identification.
The models can be validated in a variety of ways.
Residual correlation test, Bode frequency response,
pole-zero plots and cross-validation are often used.
For the case of the depropanizer column, we will
discuss some aspects as model error modeling, step
response, interaction analysis and cross-validation.

Model error modeling.- It consists in building
models that describe the dynamics relating the
inputs to the residual, in order to verify, in the
frequency domain, if any essential unmodeled
dynamics are left. This idea has attracted much
interest in the past decade, motivated by the linear
robust control theory, and because it provides more
freedom in investigating the residuals than the
classical residual correlation test [30]. From
Equation 7, we can interpret the residual as:

nll A, .
£;(t,p)=y; ()= (t.p;) = G5 (s, 05 (=6, ;)

i=1
(12)
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where G},(s,p;;) is the model of the error

corresponding  to  model G, ;(s,p;;), with

denominator and numerator orders denoted by 7]
e N, 2 s :

and mj; (”‘,}'J ,;_»;‘;‘1;,.5 Py ) respectively, and

parameter vector pj. defined in a similar way as in

Equation 9. In this study, the equation-error (EE)
method from the CONTSID toolbox is used to

compute the parameter vector ,oje-, with

n;=m;;=10. This is performed using the
residual as the output and the system inputs taken
from the identification dataset as the inputs. Figure
6 shows the Bode plot of the models of the error
and their confidence regions (3 standard deviation
of the normal distribution).

As it can be observed, the new models G, (s, p; ;)

are satisfactory within 99.6% probability at the
frequency range of interest. The new model is
compared with the old model, which contains large
uncertainties.
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ey ey oty with (T) denoting the Moore-Penrose pseudo-
| inverse. If the RDGA ., is close to zero, there
is no interaction in the system (or it is negligible).

As noticed in Figure 8, the new model has almost
the same RDGA ., profile as the depropanizer
true model, i.e. there is interaction in the whole
frequency range of interest, which plays an
important role in MPC control. The RDGA f

the old model reveals less dynamic interaction than
in the real plant. From medium to high frequencies,
the interaction level corresponding to the old
model decreases rapidly which may be inadequate
for the purpose of multivariable control.

number ©

%107 14 %10 61.2

Process
— —— New model

Fig. 6 Depropanizer model error models.

Step response.- In the plant-friendly identification P E—
procedure for MPC, step response is a logical : 4

approach for model validation. Figure 7 shows the
step response comparison between the old model
and the new model. As it can be noted, the new
model captures the steady-state gains and the time
constants of the process correctly. This means that

gt 50 100 150 o 50. 100 150 200

using the new model the “dynamic matrix”, which ' s o i i)

contains  the step response  coefficients

corresponding to the inputs to the depropanizer Fig. 7 Step response for the depropanizer column.
process, will be more successful than using the old

model. " _ FOCAmmber

— Process
— — New madsl- |4
---- Old:model

Interaction analysis.- Here it is studied the
interaction behavior of the depropanizer models as
a function of the frequency range in which we are
interested. Here, we use the relative dynamic gain
array (RDGA) number as an interaction measure, |
which is based on the Bristol’s RGA, defined as

e ]

Magnitude

RDGA s W)= [RDGAGW - 1|, (13) | s s

Where " " Frequancy (rad/min) i3 p:
T , .
RDGA(jw) = G(jw) ® (G( jw)T ) (14) Fig. 8 ICZ(SGAH.H,,,Z,@,. plot for the depropanizer
umn.
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Cross-validation.- It is one of the most important
and reveling tests for model validation. In this
case, the validation dataset, which was not used in
the identification procedure, is used to compare the
model predictions. Cross-validation results from

the old and new models and its respective
performance indicators are presented in Figure 9.
These results show that the new model reproduces
almost perfectly the dominant dynamics of the
depropanizer system.

i: FIT = 97.6208%, RY =0 99953
FIT = 05.9432%, R§ =0.00401
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|
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~ — New mudel. FIT - 98.8995%. R? —0.99304
Old modol: FIT = 17.0901%, R% ~0.31269
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v Coin
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n
1000 1500

Fig. 9 Cross-validation results for the depropanizer column.

ASSESSING THE MPC PERFORMANCE

Several methods have been proposed for MPC
performance assessment [32]. In this section, a
methodology is proposed, which uses results from
the cross-validation step. The method is based on
Thornhill et al. [33] that propose a method for
evaluation of the regulatory control performance.
However, instead of evaluating the controller
behavior, the methodology is used to evaluate the
model by analyzing the time series of the observed
error and to verify the existence of a predictable
pattern beyond the control horizon for each of the
outputs of the models. The comparison is
performed in term of variances of the residues. The
approach considers that if the MPC is to perform
well, then its internal model should be able to
predict the output of the process along a prediction
horizon p, i.e. the model error should have no

predictable components or it should not be
distinguishable from a random walk stochastic
process after time instant ¢+ p. Thus, the

proposed methodology demands a method to make

TECNIA 17 (1) 2007

predictions of the error model p -steps ahead of

the present time. Here, it is used an autoregressive
time series model of the following form:

&/(t+p)=ay+ag;(O)+ae;(t—1)++a, &t-n,+1)

(15)

where ¢;(f) is the model error described in

Equation (12) and n, is the order of the
autoregressive model. Parameters a; in Equation

15 can be fitted to a given dataset of » samples of
the model error using a least squares fit procedure:

T ;
[ao a a, ]:X}Y, (16)
a j
With
1 E/(l) 5/(2) 5,(/7“) 1
X, = l 5,.(2) .9/:(3) E/(Nf,-*—])
;_l ein-p—n,+1) g;(n-p-n,+2) 5/»(n—p)J
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sz[aj(na+p) giln,+p+1) - gj(n)}T

The difference between the actual and predicted
model errors is the residue 7. (¢) , which mean and
variance provide relevant information regarding
the predictability of the model, or the model
behavior.

In the present application, the model error, the
residue and the prediction of the model error of the
old and new models are shown in Figure 10, which
are generated using the validation dataset and
parameter values 7z, =30 and n=1500 (although
only the first 500 points are plotted in Figure 10).
Parameter p is the same as used in the MPC

controller.

Fig. 10 Predictability of the depropanizer model
errors.

From Figure 10, it can be observed that the new
model presents much smaller variability of the
residues and, therefore, a superior performance
than the current model used in the controller.
Particularly, the major variability of the residues of
the old model corresponding to output y, indicates
that it is a very poor model, as it was demonstrated
by the results of the previous section. The

TECNIA 17 (1) 2007

methodology shown above can be used as a tool to
decide the need or not of re-identifying the model
of the process.

CONCLUSIONS

In this work, it has been proposed a methodology
to re-identify the process model in a closed loop
strategy for multivariable industrial processes,
which are controlled by MPC packages based on
the two layer structure. The test signal is
introduced in the economic coefficients of
objective function of the economic layer of the
controller. The test signal is then translated into
optimal targets to the inputs of the system in the
MPC algorithm, which uses the concept of zone
control for the outputs.

The proposed methodology was tested by
simulation in a linear model of an industrial
depropanizer column®. The results show that the
proposed method is very promising in terms of
future practical application. The main feature of
the method is that considerable time is saved in the
identification procedure, and manpower is reduced
in a large extent because the algorithm can
operated unattended for several days or weeks,
preserving product specifications and without
jeopardizing plant safety. The method can serve as
the basis for periodic MPC re-commissioning and
for the design of an explicit adaptive MPC. Most
details  about the exposed  closed-loop
identification methodology can be seen in
Sotomayor et al. [34 y 35].
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